Problem 4. Given a positive integer $n \ge 2$, determine the largest positive integer $N$ for which there exist $N+1$ real numbers $a_0, a_1, \dots, a_N$ such that
$(1) \ $ $a_0+a_1 = -\frac{1}{n},$ and
$(2) \ $ $(a_k+a_{k-1})(a_k+a_{k+1})=a_{k-1}-a_{k+1}$ for $1 \le k \le N-1$.

 

 

Copyright BB © 2024
Авторски права ББ © 2024