Problem 6 In each cell of a 2025 × 2025 board, a nonnegative real number is written in such a way that the sum of the numbers in each row is equal to 1, and the sum of the numbers in each column is equal to 1. Define ri to be the largest value in row i, and let R = r1 + r2 + · · · + r2025. Similarly, define ci to be the largest value in column i, and let C = c1 + c2 + · · · + c2025. What is the largest possible value of R C ?

 
SOLUTION
 
The largest possible value of $\frac RC$ is $\frac{2025}{89}$. For the construction, partition the left $45$ columns into $45\times45$ squares, and put $\frac1{45}$ in each of the main diagonals of the squares and $0$s elsewhere in those squares. Fill the rest of the board with $\frac1{2025}$. Then, $R=45$ and $C=1+\frac{1980}{2025}=\frac{89}{45}$, so $\frac RC=\frac{2025}{89}$.

Now, we show $\frac RC\leq\frac{2025}{89}$. For each row, circle the largest number in the row. Then, let $a_i$ be the number of circles in column $i$ and let $s_i$ be the sum of the circles in column $i$. Then, we can pick $C\geq\sum_{a_i>0}\left(\frac{s_i}{a_i}-\frac1{2025}\right)+1$. By AM-GM, $\frac{s_i}{a_i}\geq-\frac1{2025}a_i+\frac2{45}\sqrt{s_i}$, so
\begin{align*}
C&\geq\sum_{a_i>0}\left(-\frac1{2025}a_i+\frac2{45}\sqrt{s_i}-\frac1{2025}\right)+1\\
&=\sum_{a_i>0}\left(\frac2{45}\sqrt{s_i}-\frac1{2025}\right)\\
&\geq\sum_{a_i>0}\frac{89}{2025}s_i\\
&=\frac{89}{2025}R,
\end{align*}
as $\frac2{45}\sqrt{s_i}-\frac1{2025}\geq\frac{89}{2025}s_i$ is equivalent to $(\sqrt{s_i}-1)(89\sqrt{s_i}-1)\leq0$ since each circled number must be at least $\frac1{2025}$. Therefore, $\frac RC\leq\frac{2025}{89}$.
 
 
 
 
Copyright BB © 2025
Авторски права ББ © 2025